
Design of a Wireless Power Transfer System for a Pacemaker 

Lauren Adachi 

In this project, a python script for designing a wireless power transfer system was created. Then, 

this script was used to design an inductive link for a pacemaker. 

 

Pacemaker Wireless Power Transfer 

I designed a wireless power transfer system for the pacemaker integrated circuit (IC) in [1] and 

[2]. Below (Figure 1) is a high-level block diagram of the pacemaker IC. The pacemaker consists 

of this IC, a pulse generator, and electrode pacing leads to provide electrical stimulation at a 

consistent frequency to set an appropriate pace for a human heart. This electrical stimulation 

consists of high voltage pulses (5V) that are generate via a high voltage generator (capacitive 

voltage multiplier).  

 

Figure 1. Block Diagram of Pacemaker Integrated Circuit. [1] 

 

Typical pacemakers are less than 1 oz in weight and less than 2 inches wide [1]. Typical 

operating frequencies for wireless power transfer include 125kHz for small coils (size of a pet’s 

implanted RFID tag) and 13 MHz for larger coils (size of a credit card). The IC chosen requires 

2.4 uW of power and 2.8 V [1]. The load impedance is therefore ZL = VL/IL  = 2.8V ^ 2 / 8 uW = 

980K Ohms.  

Therefore, the design constraints are:  

Overall size: < 1 inches 

Load power: 2.4 uW 

Load voltage: 2.8 V 

Load impedance (ZL): 980K Ohms 

Resonant frequency (f): 13 MHz 



 

Inductive Link Model 

The inductive link is modelled as depicted in Figure 2. The model includes a voltage source 

(Vsrc) with corresponding source resistance (Rsrc). The coils are each modelled as an inductor (L) 

in series with a resistor (Rs). The load is modelled as an impedance (ZL). Lastly, resonant 

capacitors (C1, C2) are added to enable maximum power transfer via impedance matching.  

Figure 2. Inductive link model. 

 

The inductive link, at resonance (at resonant frequency f), is depicted in Figure 3. At resonance, 

the capacitors become shorted out, and the coils and load are represented by the equivalent 

“reflected” resistance through the coils (Rrefl).   

Figure 3. Simplified inductive link model at resonance. 

 

 

Script  

The script specifically calculates the coil parameters for a PCB spiral inductor.    

The script takes coil, link, and requirement input parameters and determines potential coil 

designs by evaluating the Power Transfer Efficiency (PTE) and Power Delivered to the Load 

(PDE) of the power transfer system.  



The input parameters for the script include coil parameters such as 

inner diameter of coil (din), copper track width (w), and track 

spacing (s) Figure 4 depicts these parameters graphically. 

Additionally, there are link parameters such as distance of link (D) 

desired resonant frequency for power transfer (f), load resistance 

(RL = ZL), source voltage (Vsrc), and source resistance (Rsrc) and 

requirements such as load power required (PLreq) and maximum 

diameter of coil (dmax) 

Figure 4. PCB spiral dimensions [3] 

 

Script Parameters and Results for Pacemaker System 

For the pacemaker system, my input parameters were as follows: 

d_in1 = din_2 = 0.6 *10**(-3) # inner diameter, m 

w1 = w2 = 0.6 *10**(-3)# track width, m 

s1 = s2 = 2*w1 # track spacing, m 

 

P_L_req = 2.4 * 10**(-6) # power required, W 

d_max = 2 * 10**(-2) # maximum diameter of coil, m 

 

D = 8 *10**(-3)# distance of link, m 

f = 13*10**6 # desired resonant frequency, Hz 

R_L = 980*10**3 # Load resistance, Ohms 

V_src = 5 # from EM4095 driver output voltage, Volts 

R_src = 7 # from EM4095 driver output resistance, Ohms 

 

The values for Vsrc and Rsrc were taken from the EM4095 driver datasheet [5]. The equation for 

s1 came from [4]. 



The script produced:    

Possible values of n1 and n2 for given input constraints... 

n1 = 2, n2 = 4: d1(cm) = 0.72, d2(cm)= 1.44, PTE = 2.2466e-06, PDL(uW)= 3.29 

n1 = 2, n2 = 5: d1(cm) = 0.72, d2(cm)= 1.8, PTE = 6.5281e-06, PDL(uW)= 9.3 

n1 = 3, n2 = 4: d1(cm) = 1.08, d2(cm)= 1.44, PTE = 5.7183e-06, PDL(uW)= 6.26 

n1 = 3, n2 = 5: d1(cm) = 1.08, d2(cm)= 1.8, PTE = 1.59016e-05, PDL(uW)= 16.27 

n1 = 4, n2 = 4: d1(cm) = 1.44, d2(cm)= 1.44, PTE = 9.3413e-06, PDL(uW)= 7.03 

n1 = 4, n2 = 5: d1(cm) = 1.44, d2(cm)= 1.8, PTE = 2.50039e-05, PDL(uW)= 16.88 

n1 = 5, n2 = 4: d1(cm) = 1.8, d2(cm)= 1.44, PTE = 1.22802e-05, PDL(uW)= 6.19 

n1 = 5, n2 = 5: d1(cm) = 1.8, d2(cm)= 1.8, PTE = 3.19304e-05, PDL(uW)= 13.91 

To maximize PTE and PDL, I selected the final link design for the pacemaker system to be… 

n1 = 5, n2 = 5: d1(cm) = 1.8, d2(cm)= 1.8, PTE = 3.19304e-05, PDL(uW)= 13.91 

 

Physical Coil Design 

Lastly, the coils were designed in KiCAD using the tutorial in [7]. I placed a 2-pin connector in 

the schematic, drew a wire between the two pins and associated a 

footprint with the connector. I ran the Copper Spiral Script twice 

(once for a spiral on the front copper layer, CCW, and once for a 

spiral on the back copper layer, CW) and pasted the results into 

the kicad_pcb file body in Atom. I then opened the kicad_pcb file 

in pcbnew and highlighted each of the spirals and clicked to see 

their properties, and changed the net for each to the net 

connecting the two pins on the connector together. Then I 

connected the spirals together at the center with a via and 

connected each outer end of the spiral to the connector.  

Figure 5. PCB Spiral Design in KiCAD 

Conclusions 

In summary, an adaptable, configurable python script was developed for designing inductive 

power transfer links. An inductive power transfer system was designed for a pacemaker system, 

and the designed PCB coils were created in KiCAD. It is important to note that this script is 

heavily dependent on the assumptions made in [3] and [8], so although this script serves as a 

good starting place for automating inductive power transfer design, further investigation is need 

to make sure it is accurate.  

  



Appendix 

Sources 

[1] https://ieeexplore.ieee.org/document/1362855 

[2] https://academic.oup.com/europace/article/16/10/1534/2426133 

[3] https://ieeexplore.ieee.org/document/8410809/  

[4] https://www.raypcb.com/pcb-coil/ 

[5] https://www.emmicroelectronic.com/sites/default/files/products/datasheets/4094-ds.pdf 

[6] https://www.pcbuniverse.com/pcbu-tech-

tips.php?a=4#:~:text=The%20most%20common%20unit%20of,1.37%20thousandths%20of%20

an%20inch 

[7] https://www.instructables.com/PCB-Coils-in-KiCad/ 

[8] https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449264/ 

 

Code 

import scipy 

import scipy.special 

import os 

import sys 

import numpy as np 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

 

# CoilCalculator_v4 

# this script takes in input parameters and power requirements and identifies 

# viable coil parameters for an appropriate inductive link system. 

 

if __name__ == '__main__' : 

    # --- INPUT PARAMETERS 

    # L1 parameters 

    d_in1 = 0.6 *10**(-3) # inner diameter, m 

    w1 = 0.6 *10**(-3)# track width, m 

    s1 = 2*w1 # track spacing, m 

 

    # L2 parameters 

https://ieeexplore.ieee.org/document/1362855
https://academic.oup.com/europace/article/16/10/1534/2426133
https://ieeexplore.ieee.org/document/8410809/
https://www.raypcb.com/pcb-coil/
https://www.emmicroelectronic.com/sites/default/files/products/datasheets/4094-ds.pdf
https://www.pcbuniverse.com/pcbu-tech-tips.php?a=4#:~:text=The%20most%20common%20unit%20of,1.37%20thousandths%20of%20an%20inch
https://www.pcbuniverse.com/pcbu-tech-tips.php?a=4#:~:text=The%20most%20common%20unit%20of,1.37%20thousandths%20of%20an%20inch
https://www.pcbuniverse.com/pcbu-tech-tips.php?a=4#:~:text=The%20most%20common%20unit%20of,1.37%20thousandths%20of%20an%20inch
https://www.instructables.com/PCB-Coils-in-KiCad/


    d_in2 = d_in1 # inner diameter, m 

    w2 = 0.6 *10**(-3)# track width, m 

    s2 = 2*w2 # track spacing, m 

 

    # constraints 

    P_L_req = 2.4 * 10**(-6) # power required, W 

    d_max = 2.54*1 * 10**(-2) # maximum diameter of coil, m 

    n_max = int((d_max - d_in1)/((s1+w1)*2)) 

 

    # link parameters 

    D = 8 *10**(-3)# distance of link, m 

    f = 13*10**6 # desired resonant frequency, Hz 

    R_L = 980*10**3 # Load resistance, Ohms 

    V_src = 5 # from EM4095 driver output voltage, Volts 

    R_src = 7 # from EM4095 driver output resistance, Ohms 

 

    # define 2 arrays to hold PTE, and P_L values, respectively 

    PTE_array = [ [0]*n_max for i in range(n_max)] 

    P_L_array = [ [0]*n_max for i in range(n_max)] 

 

    # iterate through all possible n1 and n2 values 

    for n1 in range(1,n_max): 

        for n2 in range (1,n_max): 

            #print("n1:  " + str(n1)) 

            #print("n2 : " + str(n2)) 

 

            # ----- CALCULATIONS ----- 

            # calculate outer diameter of coil - derived via geometry 

            d1 = d_in1 + (s1+w1)*n1*2 

            #print("outer diameter of coil 1 (cm): " + str(d1*10**2)) 

            d2 = d_in2 + (s2+w2)*n2*2 

            #print("outer diameter of coil 2 (cm): " + str(d2*10**2)) 

 

            # determine k, then find Kk, Ek, and Mk for that k - 

            M = 0 

            for i in range(0,n1): 



                for j in range (0,n2): 

                    a = d_in1/2 + (s1+w1)*i 

                    b = d_in2/2 + (s2+w2)*j 

 

                    k = (4*a*b/( (a+b)**2 + D**2))**0.5 # equation 20, Schormans 

                    Kk = scipy.special.ellipk(k) 

                    Ek = scipy.special.ellipe(k) 

                    Mk = 4*3.14*10**(-7) * (a*b)**0.5 * ( (2/k - k)*Kk - 2/k*Ek ) # equations 18 & 19, Schormans 

                    M += Mk 

            #print("mutual inductance (H): " + str(M)) 

 

            # calculate inductance 

            B1 = (d1 - d_in1)/(d1 + d_in1) # equation 3, Schormans 

            d_avg1 = 0.5*(d1+d_in1) 

            u = 4*3.14*10**(-7) # FR4 permeability, roughly equivalent to free space permeability 

            L1 = u * n1**2 * d_avg1/2 * (np.log(2.46/B1) + 0.2*B1**2 ) # inductance of each coil, equation 3, Schormans 

            #print("L1 (H): " + str(L1) ) 

 

            B2 = (d2 - d_in2)/(d2 + d_in2) # equation 3, Schormans 

            d_avg2 = 0.5*(d2+d_in2) 

            L2 = u*n2**2*d_avg2/2*(np.log(2.46/B2) + 0.2*B2**2 ) # inductance of each coil, equation 3, Schormans 

            #print("L2 (H): " + str(L2) ) 

 

            # calculate k 

            k_coupling = M/(L1*L2)**0.5 

            #print("k, coupling factor: " + str(k_coupling)) 

 

            # calculate C 

            C1 = 1/(4*3.14**2*f**2*L1) # from f = 1/(2*PI*sqrt(L*C)) 

            C2 = 1/(4*3.14**2*f**2*L2) # from f = 1/(2*PI*sqrt(L*C)) 

            #print("C1 (F): "+  str(C1)) 

            #print("C2 (F): "+  str(C2)) 

 

            # calculate R_DC 

            t0_cu = 0.034798*10**(-3) # copper thickess, m via PCB Universe [6] 

            p = 1.68 *10**(-8) # resistivity of Cu, Ohm-m 



 

            A1 = t0_cu*w1    # cross sectional area, m 

            R_DC1 = p*3.14*(d1 - (w1+s1)*n1/2)*n1/A1 # equation 5, Schormans 

            A2 = t0_cu*w2    # cross sectional area, m 

            R_DC2 = p*3.14*(d2 - (w2+s2)*n2/2)*n2/A2 # equation 5, Schormans 

 

            # calculate R_skin 

            omega = 2*3.14*f 

            delta = (2*p/ (omega*u) )**0.5 

            R_skin1 = R_DC1*t0_cu/(delta*(1-2.71828**(-t0_cu/delta)))*1/(1+t0_cu/w1) # equation 10, Schormans 

            R_skin2 = R_DC2*t0_cu/(delta*(1-2.71828**(-t0_cu/delta)))*1/(1+t0_cu/w2) # equation 10, Schormans 

 

            # calculate R_prox 

            omega_crit1 = 3.1/u*(w1+s1)*p/(w1**2*t0_cu) # equation 13, Schormans 

            R_prox1 = R_DC1/10*(omega/omega_crit1)**2 # equation 12, Schormans 

            omega_crit2 = 3.1/u*(w2+s2)*p/(w2**2*t0_cu) # equation 13, Schormans 

            R_prox2 = R_DC2/10*(omega/omega_crit2)**2 # equation 12, Schormans 

 

            # calculate R_s from R_DC, R_skin, and R_prox 

            R_s1 = R_DC1 + R_skin1 + R_prox1 # equation 4, Schormans 

            R_s2 = R_DC2 + R_skin2 + R_prox2 # equation 4, Schormans 

            #print("Rs1 (Ohms): "+  str(R_s1)) 

            #print("Rs2 (Ohms): "+  str(R_s2)) 

 

            # -- calculate reflected R 

            Q_2 = omega*L2/R_s2  # page 3, Kiani 

            Q_L = R_L/(omega*L2) # page 3, Kiani 

            Q_2L =Q_2*Q_L/(Q_2 + Q_L) 

            R_refl = (M**2/(L1*L2)) * omega *  L1 * Q_2L # page 3, Kiani 

            #print ("reflected resistance (Ohms): "+str(R_refl)) 

 

            #desired R_refl 

            #print ("desired relfected resistace (Ohms): " + str(R_s1 + R_src)) ## for impedance match 

 

            # ----- EVALUATION ----- 

            # -- power transfer efficiency (PTE) 



            PTE = R_refl/(R_s1 + R_src + R_refl)*(Q_2L/Q_L) # equation 2, Kiani 

            #print("PTE: " + str(PTE)) 

 

            # -- power delivered to load (PDE) 

            P_L = V_src**2*R_refl/(2*(R_s1 + R_src + R_refl)**2)*Q_2L/Q_L # equation 3, Kiani 

            #print("PDL (uW): " + str(P_L*10**6)) 

 

            # max PDL -> assumes R_src + R_s1 = R_refl 

            P_L_max = V_src**2 / (4*(R_src + R_s1)) # by hand 

            #print("PDL max, assuming impedance match (uW): " + str(P_L_max*10**6)) 

 

            # upate PTE and P_L arrays with values calculated 

            PTE_array[n1][n2] = PTE 

            P_L_array[n1][n2] = P_L 

 

    print("Possible values of n1 and n2 for given input constraints...") 

    # for each n1, n2 combination 

    for n1 in range(1,n_max): 

        for n2 in range (1,n_max): 

            # check if P_L is greater than the required P_L 

            if( P_L_array[n1][n2] > P_L_req): 

                # print out n1, n2, d1, d2, PTE, and PDL 

                d1 = str(round( (d_in1 + (s1+w1)*n1*2*10**2), 2) ) 

                d2 = str(round( (d_in2 + (s2+w2)*n2*2*10**2), 2 ) ) 

                PTE = str(round(PTE_array[n1][n2],10)) 

                PDL = str(round(P_L_array[n1][n2]*10**(6),2)) 

                print("n1 = " + str(n1) + ", n2 = " + str(n2) + ": d1(cm) = " + d1 + ", d2(cm)= " + d2 +  ", PTE = " + PTE + ", PDL(uW)= " + PDL ) 


